602 research outputs found

    Numerical simulation of flows in curved diffusers with cross-sectional transitioning using a three-dimensional viscous analysis

    Get PDF
    A three dimensional analysis for fully viscous, subsonic, compressible flow is evaluated. An approximate form of the Navier Stokes equations is solved by an implicit spatial marching technique. Calculations were made for flow in a circular S duct and in the F 16 inlet duct. The computed total pressure contours and secondary flow velocity vectors are presented. Qualitative comparisons with experiment are shown for both ducts. The analysis is used to show how the cross section transitioning in the F 16 inlet suppresses the development of a secondary flow vortex

    The Proteus Navier-Stokes code

    Get PDF
    An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm development or research on numerical methods, but rather the development of the code itself. The objective is to develop codes that are user-oriented, easily-modified, and well-documented. Well-proven, state-of-the-art solution algorithms are being used. Code readability, documentation (both internal and external), and validation are being emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure are described briefly, and the various features in the code are summarized. The results from some of the validation cases that have been run are presented for both the two- and three-dimensional codes

    Clinical heterogeneity associated with KCNA1 mutations include cataplexy and nonataxic presentations

    Get PDF
    Mutations in the KCNA1 gene are known to cause episodic ataxia/myokymia syndrome type 1 (EA1). Here, we describe two families with unique presentations who were enrolled in an IRB-approved study, extensively phenotyped, and whole exome sequencing (WES) performed. Family 1 had a diagnosis of isolated cataplexy triggered by sudden physical exertion in multiple affected individuals with heterogeneous neurological findings. All enrolled affected members carried a KCNA1 c.941T>C (p.I314T) mutation. Family 2 had an 8-year-old patient with muscle spasms with rigidity for whom WES revealed a previously reported heterozygous missense mutation in KCNA1 c.677C>G (p.T226R), confirming the diagnosis of EA1 without ataxia. WES identified variants in KCNA1 that explain both phenotypes expanding the phenotypic spectrum of diseases associated with mutations of this gene. KCNA1 mutations should be considered in patients of all ages with episodic neurological phenotypes, even when ataxia is not present. This is an example of the power of genomic approaches to identify pathogenic mutations in unsuspected genes responsible for heterogeneous diseases

    High dissimilarity within a multiyear annual record of pollen assemblages from a North American tallgrass prairie

    Get PDF
    Citation: Commerford, J. L., McLauchlan, K. K., & Minckley, T. A. (2016). High dissimilarity within a multiyear annual record of pollen assemblages from a North American tallgrass prairie. Ecology and Evolution, 6(15), 5273-5289. doi:10.1002/ece3.2259Grassland vegetation varies in composition across North America and has been historically influenced by multiple biotic and abiotic drivers, including fire, herbivory, and topography. Yet, the amount of temporal and spatial variability exhibited among grassland pollen assemblages, and the influence of these biotic and abiotic drivers on pollen assemblage composition and diversity has been relatively understudied. Here, we examine 4 years of modern pollen assemblages collected from a series of 28 traps at the Konza Prairie Long-Term Ecological Research Area in the Flint Hills of Kansas, with the aim of evaluating the influence of these drivers, as well as quantifying the amount of spatial and temporal variability in the pollen signatures of the tallgrass prairie biome. We include all terrestrial pollen taxa in our analyses while calculating four summative metrics of pollen diversity and composition -beta-diversity, Shannon index, nonarboreal pollen percentage, and Ambrosia: Artemisia -and find different roles of fire, herbivory, and topography variables in relation to these pollen metrics. In addition, we find significant annual differences in the means of three of these metrics, particularly the year 2013 which experienced high precipitation relative to the other 3 years of data. To quantify spatial and temporal dissimilarity among the samples over the 4-year study, we calculate pairwise squared-chord distances (SCD). The SCD values indicate higher compositional dissimilarity across the traps (0.38 mean) among all years than within a single trap from year to year (0.31 mean), suggesting that grassland vegetation can have different pollen signatures across finely sampled space and time, and emphasizing the need for additional long-term annual monitoring of grassland pollen

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY challenge

    Get PDF
    Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Quasi-two-dimensional acoustic metamaterial with negative bulk modulus

    Full text link
    We present the experimental realization and characterization of an acoustic metamaterial with negative bulk modulus. The metamaterial consists of a two-dimensional array of cylindrical cavities, and the bulk modulus is controlled by their radius size and length. Experiments are performed in a two-dimensional waveguide where a slab of seven layers is used to extract the parameters of the metamaterial. A complete characterization of the constructed structure is reported, including the dispersion relation of the acoustic bands and the skin depth effect, which both have been measured, and the data are well supported by semianalytical models and by finite-element simulations. © 2012 American Physical Society.This work was supported by the Spanish MICINN under Contracts No. TEC2010-19751 and No. CSD2008-0066 (CONSOLIDER program), and by the USA Office of Naval Research. We acknowledge the technical help by A. Diaz-Rubio and A. Climente. J.S.-D. acknowledges useful discussions with A. Broatch and A. Krokhin. D.T. acknowledges the postdoctoral grant provided by the UPV under the program Campus de excelencia internacional.García Chocano, VM.; Graciá Salgado, R.; Torrent Martí, D.; Cervera Moreno, FS.; Sánchez-Dehesa Moreno-Cid, J. (2012). Quasi-two-dimensional acoustic metamaterial with negative bulk modulus. Physical Review B. 85(18). https://doi.org/10.1103/PhysRevB.85.184102S8518Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301Yao, S., Zhou, X., & Hu, G. (2008). Experimental study on negative effective mass in a 1D mass–spring system. New Journal of Physics, 10(4), 043020. doi:10.1088/1367-2630/10/4/043020Park, C. M., Park, J. J., Lee, S. H., Seo, Y. M., Kim, C. K., & Lee, S. H. (2011). Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs. Physical Review Letters, 107(19). doi:10.1103/physrevlett.107.194301Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644Wang, Z. G., Lee, S. H., Kim, C. K., Park, C. M., Nahm, K., & Nikitov, S. A. (2008). Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. Journal of Applied Physics, 103(6), 064907. doi:10.1063/1.2894914Two-dimensional acoustic metamaterial with negative modulus. (2010). Journal of Applied Physics, 108(7), 074911. doi:10.1063/1.3493155Fey, J., & Robertson, W. M. (2011). Compact acoustic bandgap material based on a subwavelength collection of detuned Helmholtz resonators. Journal of Applied Physics, 109(11), 114903. doi:10.1063/1.3595677Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301Torrent, D., & Sánchez-Dehesa, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics, 13(9), 093018. doi:10.1088/1367-2630/13/9/093018Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004Pendry, J. B., & Li, J. (2008). An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(11), 115032. doi:10.1088/1367-2630/10/11/115032Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301Spiousas, I., Torrent, D., & Sánchez-Dehesa, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters, 98(24), 244102. doi:10.1063/1.3599849Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561Fokin, V., Ambati, M., Sun, C., & Zhang, X. (2007). Method for retrieving effective properties of locally resonant acoustic metamaterials. Physical Review B, 76(14). doi:10.1103/physrevb.76.144302Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.20430

    Collective Effects in the NSLS-II Storage Ring.

    Get PDF
    A new high-brightness synchrotron light source (NSLS-II) is under design at BNL. The 3-GeV NSLS-II storage ring has a double-bend achromatic lattice with damping wigglers installed in zero-dispersion straights to reduce the emittance below 1nm. In this paper, we present an overview of the impact of collective effects upon the performance of the storage ring. Subjects discussed include instability thresholds, Touschek lifetime and intra-beam scattering
    corecore